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Abstract-Thermocapillary instabilities on floating half zone convection in microgravity environment were 
investigated by linear instability analysis method. The critical Marangoni numbers were obtained and 
compared with the experimental ones. The influences of the liquid bridge volume and the aspect ratio on 
the critical Marangoni number were analyzed. It is found that the liquid bridge volume and the aspect 
ratio have great influence on the critical Marangoni number. There was a gap region where the oscillatory 
convection will not be observed in present analyses and in experiments in the curve of the critical Marangoni 
number vs the liquid bridge volume for the case of large Prandtl number and small aspect ratio. 0 1997 

Elsevier Science Ltd. 

1. INTRODUCTION 

Thermocapillary flow is of importance in many appli- 
cations such as crystal growth, and the instability 
mechanism of the thermocapillary flow is also needed 
to be explored. The temperature fluctuation mech- 
anism in thermocapillary flow is sensitive for the 
industry applications. Although thermocapillary 
instability of liquid layer with free surface has been 
proposed by Pearson [l] in 1958, several other insta- 
bility mechanisms considering the capillary flow have 
also been proposed by others [226]. The convective 
instability mechanism of liquid layer has been pro- 
posed by Smith [2, 31. Since the basic flow and the 
temperature distribution in their analyses are chosen 
linear distribution, and the endwalls’ effects have not 
been considered using parallel flow approximation. 
The effects of the endwalls of liquid bridge on the 
critical Marangoni number will be discussed later. For 
experimental cases, the temperature distribution in the 
center part of liquid bridge of large aspect ratio may be 
considered as linear distribution, but the temperature 
distribution near the wall is not uniform especially for 
liquid bridge of small aspect ratio, the mechanism 
proposed may account for the temperature fluctuation 
mechanism for the liquid bridge with large aspect 
ratio. The same mechanism of convection instability 
is also supported by Kuhlmann [4, 51. In their analy- 
ses, the endwalls’ effects have been considered, but the 
effects of the volume size have not been considered. 
Other oscillatory mechanism associated with buoy- 
ancy force has been proposed by Hu [6]. Nearly all 
analyses focus on a liquid bridge of cylinder, which is 
a special case. General configuration of liquid bridge 
deviates from the cylinder, and it is expected that 
the liquid bridge volume is another important critical 
parameter and has obviously influence on the critical 

Marangoni number. This influence was studied by 
experiment [7] and direct numerical simulation [8] for 
medium of 10 cst silicon oil. Present paper will study 
the oscillatory convection by the linear instability 
analysis method, and the results may cover a relative 
larger parameter range. The Prandtl number of trans- 
parent medium limits in Pr E [ 1, lo*], and this range of 
Prandtl number will be analyzed in the present paper. 
The second section will be mathematical description, 
the third section is results and discussions and the last 
is conclusion. 

2. LINEAR INSTABILITY ANALYSIS 

The usual half zone model which has constant tem- 
peratures on both rods has often been used to inves- 
tigate the role of thermocapillary convection in float- 
ing zone crystal growth processes [9]. The schematic 
model of the usual floating half zone is shown in Fig. 
1, the liquid with free surface is bounded between the 
two rods. A cylindrical coordinate system is used and 
the origin of coordinates is located at the middle of 
the lower rod. The flow field and temperature dis- 
tribution in a liquid bridge are considered in the Bous- 
sinesq approximation. Zero gravity is assumed in the 
present paper. The non-dimensional parameters of the 
system are listed below : 

pr = 1 U&l 
a’ 

Re = __ 
” ’ 

(1) 
where Pr, Re, Ma, Bi, A denote Prandtl, Reynolds, 
Marangoni and Biot number and aspect ratio of the 
liquid bridge, respectively. L is the gap between the 
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r 
A 
Bi 
h 

aspect ratio, L/2R,, 

Biot number, hR,/k 
thermal transfer coefficient 

[J m -‘s-’ Km’1 
J 

k 

integer denoting the last grid station in 
a radial direction 
thermal conductivity of liquid 

[J m -‘s-l K-‘I 
L 
m 
Ma 
N 

the gap between the two rods [m] 
azimuthal wave number 
Marangoni number, lo;lATR,/pva 
integer denoting the last grid station in 
an axial direction 

P 
Pr 

PO 
r 
R 
R’ 

dimensionless perturbed pressure 
Prandtl number, V/E 
dimensionless basic pressure 
dimensionless radial coordinate 
dimensionless radius of the free surface 
differentiation of R with respect to z, 
dR/dz 

Re Reynolds number, UoR,/v 

Ro radius of the rod [m] 
t dimensionless time 
T dimensionless perturbed temperature 

T! the jth degree Chebyshev polynomial 

T, the nth degree Chebyshev polynomial 

TL temperature on the lower rod [K] 

NOMENCLATURE 

r,, 
AT 

IA 

uo 
UO 

2’ 

W 

+vo 

z 

dimensionless basic temperature 
temperature difference between the 
upper rod and the lower rod [K] 
dimensionless perturbed radial 
velocity 
dimensionless basic radial velocity 
reference velocity, ]a;]AT/pv 
dimensionless perturbed azimuthal 
velocity 
dimensionless perturbed axial velocity 
dimensionless basic axial velocity 
dimensionless axial coordinate. 

Greek symbols 

1 
thermal diffusivity 
width of the upper and lower parts on 
the free surface where the stress balance 
condition are modified 

Q 
amplitude of perturbation 
azimuthal anger 

V kinematic viscosity of liquid [m’ s-‘1 

P density of liquid [kg m-‘1 
cr eigenvalue, cr,+ ia, 

ci image part of eigenvalue 
or real part of eigenvalue 

c-r surface tension differentiation with 
respect to temperature [N m-’ K -‘I. 

Fig. 1. Schematic drawing of the usual floating half zone 
heating from above. 

two rods, R. is the radius of the rod and AT is the 
applied temperature difference between the upper and 
lower rods. The reference velocity U,, = Iu$IAT/pv, 
reference length scale is chosen as R, and reference 
time scale is R,/U,. Constants p, v, k, c(, h, 0; denote 

- 

density, kinematic viscosity, thermal conductivity, 
thermal diffusivity, thermal transfer coefficient and 
surface tension differentiation with respect to tem- 
perature, respectively. 

In linear instability analysis of thermocapillary con- 
vection in the usual floating half zone, the basic flow 
and temperature distribution are essential for the 
exact value of critical Marangoni number. The basic 
flow and temperature distribution have been obtained 
by numerical computation of axisymmetric thermo- 
capillary convection in the usual floating half zone 
using spectral method [9]. The small amplitude fluc- 
tuation of the velocities u = (u, u, w), pressure p and 
temperature T are imposed to the basic state 
u. = (uo, 0, We), p. and To as follows : 

UO u’ 

0 11 

NJ0 f& W’ (2) 
PO P 

< To , ,T, 

where the perturbation parameter E is small in order of 
magnitude. The small amplitude fluctuation equations 
may be expressed as follows : 
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v-u=0 

aT 
Z+u~VT,,+u,~~T= 

1 
----V’T. 
RePr (3) 

The boundary conditions at the rods (Z = 0 and 2A) 
are the same ones of usual floating half zone model 

[91. 
Equation (3) may be rewritten in the cylindrical 

coordinate system as follows, 

I apu) ;,+;g+g=o (44 

ah iau u ah ah 
X s+;g-yz+ -+~-2& r2aQ2 

( a20 I au v a% 
x s+yay-7+ --+aZZ+-- r2aQ2 

a2C r; it; 
) 

(4c) 

aw ap I+u”~+w”g+,,~+,+ _-$- 

z 

(44 

aT af+u”;+w”g+uar,l+w~ 
(7r 

(4e) 

The small perturbation quantities (u, v, w,p, T) could 
be suggested in the following forms : 

‘2.4’ Il,(r, 4 
2’ irC~(r, z) 

U’ = $oeC’+‘*‘a G’,(r,z) t-cc. (5) 

P L (r, z) 
,T, . Fdr,z) , 

where B = cr,+ icr,, or and B, are, respectively, the 
increasing rate and frequency of small perturbation, 
m denotes the azimuthal wave number, i denotes the 
complex unit fl, and C.C. denotes the complex 
conjugate. Distribution (5) gives a spectrum of per- 
turbation, and the discussion is focused in a single 
mode m. In this case, the subscript m will be omitted 
for simplification. Applying the curl operation 
throughout eqns (4b)-(4d) and eliminating the pres- 
sure term, following equation may be obtained : 

(6a) 

au, ac’ aa 
+*z ruoy +vwoZ +u,F ,” i 

i a% 
=-( 

I iaa l+m2 a% 2m’ 
Re ar2 r L?r 

-----~+_+3---_ 
r2 a22 r2 

1 a 

[( 

a9 i ai 1 +m2 a% 2 --_ y _+___ 
Rear ar2 r ar 

---C+-+--_ r2 ?z’ r? 

(6b) 

1 _- y 

i a a% i ad l+m* a% 2 =__ 
Re az -+tyg- ar2 

--+-+--_I 
r2 a22 r’ 

1 i a29 1 a* m2 a26 

Re r 
-+yy--fi+z 
dr2 r2 ,2 

aF 7” - 
~+uo~+M.II~+~~+)i~ 

‘r a2 dZ 

(6~) 

(fjd) 

The above equations must be satisfied with the fol- 
lowing boundary conditions. 

At z = 0 and 2A : 

u” = 0, 6 = 0, $ = 0, g = 0, T= 0. (7) 

At r = R(z): 

= - W(z)(l +tR’2)‘.‘2 ($R’+ $j 

aT” aT” 
- - zR’ = -(I +R”)“‘Bi* T 
& (8) 

where W(z) is the regularization factor applied to the 
upper and lower parts on the free surface, and has the 
following form : 
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W(z) = 

1 - cos(z7#,) 2 

2 I 
z < s, 

1, 6,<z<2A-6, 

![ 1 - cos((2A -z)n/&) 2 

2 1 z>2A-6, 

(9) 

where crS is a small positive number and is adopted as 
the width of the upper and lower parts of the free 
surface where the tangential components of the stress 
balance condition on the free surface are modified, 
6, = 0.2A. the conditions at the center axis is as fol- 
lows : 

atr=O 

^_ 
m = 1: ~=o,~-e=o,~=o,77’0 

m> 1: zZ=0,~=0,~=0,~=0. (10) 

The spatial discretization is base on a spectral method 
using Chebyshev polynomial expansions in the axial 
direction and the radial direction, 

:(r, z) 
fi(r, 4 I- *(r, 4 
4(r, z) 
W, 4 

+$&(1-f), 
(0 < r < R(z),0 <z < 2A) (11) 

where J, N are the orders of Chebyshev polynomial 
expansions in radial and longitudinal directions, 
respectively, T,, T, are the jth and nth degree Cheby- 
shev polynomials, fi, 8, I?, p”, T” are the spectral 
coefficients of the corresponding velocities, pressure 
and temperature. The collocation grids are chosen as 
following : 

(r,,z[)= p(l-cos$, A(l-cos:)] 

The algebraic equations are obtained by substituting 
the variables in the equations and boundary con- 
ditions with associated Chebyshev polynomial expan- 
sions (11) at each node. 

,io #to [A(r;, z,, j, n) - oC(r,, z,,j, n)l@(j> n) = 0, 

O<i<J, O<lGN (13) 

where cp( j, n) = (ti, v”, G, n>‘( j, n), superscript T 
denotes transposition, A and C are square matrices. 
The eigenvalue and eigenfunction are obtained by the 
Q-R method. 

3. RESULTS 

The usual half zone of liquid bridge which has con- 
stant temperatures on both rods is considered in the 
present linear instability analyses. The basic flow pat- 
tern and temperature distribution which have axi- 
symmetric forms were obtained by numerical cal- 
culation similar to the one in [9]. Figure 2(a-c) are 
the basic flow pattern in the vertical cross-section of 
the usual half zone of liquid bridge with Pr = 10, 
Ma = 8000, A = 0.6 and V = 0.8, 1 and 1.2, respec- 
tively. Figure 3(aac) are the basic temperature dis- 
tribution in the vertical cross-section of the usual half 
zone of liquid bridge with Pr = 10, Ma = 8000, 
A = 0.6 and V = 0.8, 1 .O and I .2, respectively. 

3.1. Thermocupillary instability of the half zone of 
liquid bridge 

The critical Marangoni numbers for the onset of 
oscillatory convection with azimuthal wave number 
m = 0, 1 and 2 are shown in Fig. 4 for Pr = 50 as 
function of the aspect ratio. The critical curve cor- 
responding to 111 = 1 is the most unstable mode. 

The perturbed flow pattern and temperature dis- 
tribution are then obtained by using the linear insta- 
bility method mentioned above. The perturbed tem- 
perature distribution in the vertical cross-section 
f3 = 0 for the most unstable mode m = 1 are shown 
in Fig. 5(a-c) for Mu = 8000, Pr = 10, A = 0.6, and 
V = 0.8, 1.0 and 1.2, respectively. There are a mini- 
mum temperature center in the vertical cross-section 
0 = 0 of the half zone and a maximum temperature 
center in the opposite vertical cross-section 0 = rc. The 
perturbed temperature distributions for different 
liquid bridge volumes show different features. The 
perturbed flow pattern in vertical cross-section 
0 = 7c/2 for the most unstable mode m = 1 are shown 
in Fig. 6(a-c) for Ma = 8000, Pr = 10, A = 0.6, and 
V = 0.8, 1 .O and 1.2, respectively. From the perturbed 
flow pattern. it can be observed that the convection in 
the vertical cross-section is driven by the perturbed 
gradient of surface tension. 

The perturbed temperature distribution in the hori- 
zontal cross-section for the most unstable modem = 1 
are shown in Fig 7(aac) for Ma = 8000, Pr = 10, 
A = 0.6 and V = 0.8, 1 .O and 1.2, respectively. The 
maximum and minimum temperature are distributed 
asymmetrically in ?he bulk region of the half zone of 
liquid bridge. The flow pattern in the horizontal cross- 
section for the most unstable mode m = 1 are shown 
in Fig. 8(a-c) for Mu = 8000, Pr = 10, A = 0.6 and 
V = 0.8, 1.0 and 1.2, respectively. Two vortices are 
formed in the horizontal cross-section and are also 
driven by the surface tension gradient in the periphery 
direction. The similar flow patterns in the horizontal 
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om=2 
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Am=0 

03 
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A 
Fig. 4. Neutral curves for V = 0.8 and nr = 0, 1 and 2. 

cross-section were also observed in present exper- 
iments. The mechanism of temperature oscillation for 
large Prandtl number is initiated by the temperature 
oscillation on the free surface, and the asymmetric 
flow in the bulk region of the half zone of liquid bridge 
are generated by the perturbed tangential surface ten- 
sion gradient which is associated with the perturbed 
temperature distribution on the free surface. 

3.2. Dependence of critical Marangoni number on the 
aspect ratio 

The dependence of the critical Marangoni number 
on the aspect ratio of the half zone of liquid bridge is 
investigated. The critical Marangoni numbers vs 
aspect ratio for the most unstable mode m = 1 are 
plotted for V = 0.8, 1.0 and 1.2 in Fig. 9(a<) for 
Pr = 1, 10 and 50, respectively. The theoretical results 
of V = 1 can be compared with the experimental 
results of [lo] and other numerical results [4,5]. It can 
be seen the critical Marangoni number will increase 
when the aspect ratio decreases for constant liquid 
bridge volume. The critical Marangoni number will 
approaches a small value when the aspect ratio of 
liquid bridge is large enough. The critical Marangoni 
number of liquid bridge with small aspect ratio is 
larger than that of the liquid bridge with large aspect 
ratio. 

The critical frequencies u,~~+ Ret, for the most 
unstable mode m = 1 vs the aspect ratio are plotted 
for V = 0.8, 1 and 1.2 in Fig. lO(a-c) for Prandtl 
number Pr = 1, 10 and 50, respectively. The critical 
frequencies are also increased with decreasing aspect 
ratio, for high frequency is usually associated with 
higher Reynolds number. 

3.3. Dependence of critical Marangoni number on the 
liquid bridge volume 

The influences of the liquid bridge volume on the 
critical Marangoni number are also investigated. The 
curves of the critical Marangoni number for the most 

unstable mode m = 1 vs the liquid bridge volume for 
A = 0.6 are plotted in Fig. 1 l(a, b) for Pr = 10 and 
50, respectively. The critical curves of the Marangoni 
number vs the liquid bridge volume obtained in this 
paper are compared with that in [7, 81 which discuss 
the case of larger Prandtl number of Pr = 105. In the 
present paper of the case Pr = 50 and A = 0.6, there 
exists a gap region where the oscillatory convection 
will not be observed in experiments [7, 81. The critical 
curves consist of two branches which are cor- 
responding to the fat bridge and slender bridge for 
larger Prandtl number. This conclusion agrees with 
the one in [7, 81. In the case of Pr = 10 and A = 0.6, 
the critical curves are continue and two branches are 
disappeared. However, there exists regions of liquid 
bridge volume with relatively large critical Marangoni 
number, the liquid bridge volume has great influence 
on the critical Marangoni number. 

The critical frequency o,,, * Ret, for the most unstable 
mode m = I vs the volume size of liquid bridge for 
A = 0.6 are plotted in Fig. 12(a, b) for Pr = 10 and 
50, respectively. 

4. CONCLUSION 

The linear instability of axisymmetric thermo- 
capillary flow in usual floating half zone which has 
constant temperatures on both rods has been inves- 
tigated. The critical curves of the Marangoni number 
depending on the liquid bridge volume and the aspect 
ratio in microgravity environment have been 
obtained. The calculation methods including the com- 
putation of axisymmetric basic flow and the three- 
dimensional linear instability analyses used in the pre- 
sent paper are proved successful. 

The mechanism of oscillatory thermocapillary con- 
vection is investigated by using linear instability 
method. From the calculation it can be observed that 
the oscillatory convection in the liquid bridge of float- 
ing half zone is driven by the gradient of the surface 
tension coupled with the internal process of convec- 
tion. The results show the oscillatory temperature is 
coupled with the oscillatory flow and the oscillatory 
convection is generated by fluctuation of surface ten- 
sion associated with the fluctuation of surface tem- 
perature for the case of large Prandtl number. The 
calculation results of instability analyses agree quali- 
tatively with the experimental results and other theor- 
etical results. 

The influences of the aspect ratio on the critical 
Marangoni are investigated. The critical Marangoni 
number and the critical frequency will decrease when 
increasing aspect ratio and approach a limited value 
with rather larger aspect ratio. 

The influence of the liquid bridge volume on the 
critical Marangoni number are also discussed. For the 
case of large Prandtl number and small aspect ratio, 
there exists a gap region where the oscillatory con- 
vection will not be observed in present analyses and 
experiments, two branches of the curves of the critical 
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ov=l.2 
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Fig. 9. The critical Marangoni number for the most unstable 
mode m = 1 vs aspect ratio of liquid bridge for V = 0.8, 1.0 

(a) T 
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Cc) 

20 
A ” = 0.8 
ov= 1.0 
ov=1.2 

Fig. 10. The critical frequency for the most unstable mode 
m = 1 vs aspect ratio of liquid bridge for V = 0.8, 1.0 and 

1.2 and (a) Pr = 1, (b) Pr = 10, and (c) Pr = 50 and 1.2 and (a) Pr = 1, (b) Pr = IO, and (c) Pr = 50. 
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01 I I I I I 
0.4 0.6 0.8 1.0 1.2 1.4 

V 

(b) 

OE+ooL 1.4 
V 

Fig. 11. The critical Marangoni number for the most unstable 
mode I?Z = 1 vs the liquid bridge volume for A = 0.6 and (a) 

Pr = 10, (b) Pr = 50. 

Marangoni number versus volume size are obtained. 
Critical frequencies are non-uniformly distributed 
with the volume size. 

The critical curves of the Marangoni number are 
strongly influenced by the liquid bridge volume. The 
features of the critical curves of Marangoni number 
are also influenced by the Prandtl number, the insta- 
bility feature of thermocapillary convection for the 
case of small Prandtl number Pr < 1 will be discussed 
in the future. 
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